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Code review, the manual process of inspecting source code by fellow teammates, is 

recognized as a crucial part of the software development lifecycle. Despite helping detect 

errors and encouraging further code improvement, code review activities take a toll 

on the developers’ valuable time and efforts. Yang et al 1 reported millions of code 

reviews take place in a typical software project involving thousands of reviewers 

annually, occupying nearly half the project cost and duration. Hence, it is of significant 

demand to automate both code review and fix generation tasks.

With the rapid advances in deep learning techniques, researchers proposed many 

pretrained models 2 focusing on source code. Although novel fine-tuning attempts on 

large-scale datasets showed promising results, accurate code review and fix generation 

remain challenging due to their inherent diverse and non-unique nature. Training on 

huge datasets requires costly computing resources imposing a negative impact on carbon 

footprint globally.

Fortunately, large language models can reduce the need for repetitive training while 

offering amazing few-shot learning capabilities 3, which refers to prompt engineering 

of the model with a few similar query-response pairs. Designing efficient prompts for 

the mentioned tasks yet remains less explored, motivating us toward this research 

direction.

The objectives for the research are fourfold. First, we aim to investigate the 

effectiveness of LLM-based few-shot learning strategy in software engineering task 

automation. We want to work on two of the most popular but less explored software 

engineering tasks: generating review comments, and then fixing the inefficient, low-

quality code based on those reviews automatically.

Secondly, we wish to explore a few high-performing large language model APIs 

offered by OpenAI, the market-leading international research organization producing 

generative models with billions of learning parameters. Our objective here is to 

efficiently utilize the API-provided limited prompt space, eventually designing a cost-

effective query strategy.

Most importantly, we plan to experiment with two of our devised prompt engineering 

techniques as the starter: incorporating human language summary and programming 

language-specific semantic insights like function call graphs for a given code. The 

motivation is to strengthen the giant-corpus human-language conversational agent by 

combining relevant program-level linguistic context with it. BLEU score is widely used 

to assess the quality of machine-generated text, hence improving the state-of-the-art 

BLEU scores remains our key objective.

Finally, we want to conduct additional ablation studies to determine the isolated, stand-

alone influence of each of our applied augmentation strategies on the output result

1. Reproducing Baseline

First, we download the publicly available pretrained model checkpoints and labeled train, 

validation, and test datasets. The challenge in reproducing the baseline results lies in fine-

tuning the giant deep learning model ‘CodeReviewer’ with 223 millions of 

parameters by Microsoft Research 4 .

2. Natural Language Summary Data Collection

‘CodeT5’ 5, an identifier-aware encoder-decoder transformer model achieves the current 

best performance on code summarization tasks. Hence, we employ this model to take 

programming language code snippet as input and get a natural language summary as 

output. We tune the model to work with 512 token inputs and 50 token outputs per batch 

(4096 tokens roughly represent 3000 English words). CodeT5 model offers similar 

challenges to that of the CodeReviewer model mentioned above.

3. Function Call Graph Data Collection

Function call graph is a graph theoretical representation of function flows in a code and 

their internal relationships. Call graphs have been widely used to facilitate understanding 

the structure, evolution, and execution flow of software systems. We experiment with 

Tree-sitter, a popular syntax tree generator tool to generate function call graphs for 9 of 

the most used programming languages: C, C++, Go, Python, C#, Java, PHP, 

JavaScript, and Ruby.

1. Experimental Models

At this point, we are ready to invoke the OpenAI API with our augmented prompt. 

We select 5000 entries per task for the initial experiment via random sampling. We 

plan to play with two of the most promising OpenAI models: Codex and GPT 3.5-

Turbo respectively. While Codex specializes in source code generation, GPT 3.5-

Turbo is known for its supreme performance in general-purpose language 

understanding.

2. Input-Output Representation

The paid APIs have a limitation on the input-output allowance (4096 tokens at a 

time), hence effectively utilizing the prompt space turns out to be a major 

challenge. In the case of 3-shot prompting, we have 1024 tokens for each exemplar. 

We initially plan to allocate 512 tokens for the original code snippet (diff hunk), and 

3/5th of the remaining half tokens for the function call graphs, leaving the rest for 

summaries.

3. Result Analysis

We then evaluate the BLEU scores for our experiment samples, with and without 

incorporating the BM-25 information retrieval algorithm to fetch relevant 

exemplar shots, keeping the former one as the baseline. Finally, we compare our 

output results with the already reproduced numbers earlier and analyze the 

performance improvement. Additionally, we proceed to validate our findings via the 

Wilcoxon signed-rank statistical hypothesis test for different metrics and paired 

values. We also wish to conduct an ablation study to determine the stand-alone 

influences of the proposed augmentations.
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So far, we have performed experiments 

with the 5000 sample test set for the 

code review generation task. The table 

below presents the BLEU scores 

computed and the confidence interval at 

95%.

The 1st row of the table shows the 

baseline of the comparison, without any 

call graph and summary integrated. The 

table clearly shows that incorporating 

function call graph improves the BLEU 

score, albeit by a small margin. 

Interestingly, code summary does not 

seem to improve performance, when 

considered both solo and combined with 

call graph.

Variant BLEU 

Score (%)

Confidence 

Interval @ 

95%

Davinci_BM

25_base

4.52 0.128

Davinci_B

M25_call

4.6 0.126

Davinci_BM

25_sum

4.42 0.124

Davinci_BM

25_both

4.42 0.127

Table 1: BLEU Scores on Code Review 

Generation Task

In this project, we expect our proposed prompt augmentation techniques to improve 

the standard BLEU metric on top of the state-of-the-art results for the chosen tasks 

and datasets. We hope to achieve our anticipated answers to the research questions: 

few-shot prompt engineering with relevant natural and programming language-

specific knowledge augmentation indeed helps LLMs identify improved context 

to achieve better cost-effective performance compared to many pretrained and 

finetuned models with a huge carbon footprint and compute requirements.

However, the code summary produced from the oldfile portions tend to hamper the 

performance. One possible reason behind this can be the poorly generated summary 

from the entirety of the old files. If only the responsible functions can be located and 

then summarized, the BLEU score might improve. We will also perform our 

experiment with the code refinement task as the next step. We expect software 

industries will hugely benefit from automated code review and refinement 

activities and focus on more important goals.
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